White Paper from the Commission

Roadmap to a Single European Transport Area: Towards a competitive and resource efficient transport system

ACEA comments

- ACEA calls for an urgent clarification to the wrong signal sent by the White Paper with regard to the acknowledged principle of ‘co-modality’ which should have been at the centre of the future European transport policy, not modal shift ones.

- In the future, transport demand will increase in line with GDP and trade growth and all transport modes will need to increase their offer and efficiency.

- Transport modes do not compete with each other; in general modes are complementary. In freight transport, the value of the goods is the main criterion for the selection of the mode to be used.

- No mode is “per se” more friendly for the environment. In transport, the environmental performance of modes depends on a number of circumstances. For this the individual case has to be considered, if we want to take seriously the challenges of climate change and want to select the most climate friendly option for each transport task.

- In a competitive economy, cost efficiency is an important factor in the choice of transport modes.

- Individual mobility will remain one of the key solutions to mobility for the future with an ageing population. Individual and collective transports offer different services and therefore fulfill different needs. Urban mobility must not be hampered by measures that increase social inequalities between different categories of users.

- Burdening road transport with additional taxes and charges will have a negative impact on the EU economy and on European households’ expenditures and therefore their purchasing power.
• **Charging** for the internalisation of external costs is only acceptable if double taxation is avoided, if it is applied to all modes of transport and the level of charge is fair and based on scientifically measurable costs. The revenue collected should be hypothecated for reducing the external costs for which the charge has been paid.

• **Company cars** are a positive tool that facilitates entrance in the market of cleanest, safest and most recent fuel-efficient technology which is then reflected in the second hand market.

• **Public procurement** rules contribute to the modernisation of the public fleets, thus improving their environmental performance by introducing the latest, cleanest and most fuel efficient technologies and the safest vehicles into the market.

• Addressing all the ways for reducing CO2 in an **Integrated Approach**, not just the vehicle technology, is essential in order to continue making significant CO2 reductions. The White Paper deviates from the CARS 21 approach of integrating policies to ensure a viable future for the auto industry in Europe. It would substantially reduce demand for vehicles in Europe and thus present a serious threat to automotive manufacturing and employment in Europe, both for vehicle and component manufacturers.

• A **technology-neutral policy** approach is essential: it reinforces the potential for overall technological progress.

• Regarding the announced **regulatory measures** for reducing **CO2 from commercial vehicles, manufacturers’** believe that it is needed a dedicated policy approach that takes into account the work-done’ principle, by looking at all the different transport missions for commercial vehicles.

• Some of the **lowest cost opportunities for emission reductions** in transport have **not been exploited** so far. Such is for instance the case of EMS (European Modular System) or the development of new loading units and aerodynamic devices.

• The automotive industry encourages the Commission to pursue its efforts to further liberalise **cabotage**.

• The benefit of **speed limits** for LCVs is questionable; further research is clearly needed in this area before considering any initiative by the Commission.

• The goal of generally shifting road freight over **300 km is not supported by any of the most recent independent scientific research** nor does it make sense from an economic or environmental point of view.

• Transport policy and **CARS 21** should be part of the same equation: the EU needs integrated policies.
EXECUTIVE SUMMARY

1. The Commission’s White Paper “Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system” adopted on 28 March 2011 recognises that mobility and transportation will further boost economic growth and job creation while addressing major societal challenges including sustainable development, environmental protection and transport-related safety.

2. Transport must indeed be seen a part of the European sustainable growth and competitiveness. The White Paper does not fully recognise the importance of road transport, which fulfils and will be fulfilling such an overwhelming majority of the transport needs of companies and individuals in Europe. The Commission should have based its policy on a much more positive approach to road transport, in particular by highlighting the benefits it brings to the society and its direct link to GDP indicators. All efforts should have been made to support road transport with incentives rather than burdening it with additional taxes and charges that will have a negative impact in the economy and in households.

3. The Commission, however, sends the wrong signal with regard to the acknowledged principle of ‘co-modality’ and ACEA calls for an urgent clarification to this respect. The 2001 modal-shift approach, that failed to deliver results in the past decade, gave way to the more constructive, affordable and successful co-modal approach, as early as it was recommended by the Mid-term review of 2006. The background experience that had been accumulated in these last ten years was invaluable and it should have been the main tool for the Commission to avoid addressing our upcoming transport challenges with policy measures that would fall short of everyone’s expectations, after possibly wasting considerable resources.

4. The Commission has chosen not to base its vision on the past experience, neither on the stakeholders input nor on the research material commissioned during the long consultation period preceding the White Paper’s publication. Apart from organisations representing railroad interests, none of the stakeholders consulted nor the studies initiated and financed by the Commission, recommended a come back to a modal shift policy approach. Indeed, energy efficiency targets, not modal shift ones, were unanimously recommended to be at the centre of the future European transport policy.

2 Evaluation of the Common Transport Policy of the EU from 2000 to 2008, Steer Davies Gleave, August 2009, page 6, paragraph 1.36
3 TRANSvisions, Final Report, March 2009, page 181, paragraph 7.6.1
4 Towards the decarbonisation of the EU’s transport sector by 2050, AEA, June 2010, page 68, paragraph 6.2.1
5. All existing forecasts agree that transport demand will increase in line with GDP and with trade growth. **All transport modes will need to increase their offer and efficiency** in order to cope sustainably with such demand. And road traffic is expected to remain the dominant transport mode both in passenger and freight transport. Less motor vehicles is not the solution, because there will not be less demand for flexible transport solutions. Policy-makers vision and reality must come to terms with each other. This is a pre-requisite for a credible and motivating transport policy.

6. Within **CARS 21** policy makers and other major stakeholders including the auto industry are defining the regulatory framework for a competitive automobile industry in Europe that can fully contribute to the further transformation towards sustainable transport. Transport policy and CARS 21 should be part of the same equation: the EU needs integrated policies. All transport modes will need to increase efficiency and environmental performance. Vehicle manufacturers are delivering on that premise day after day.

7. The Commission must also be cautious about setting technology-related targets, for example with regard to city access. It is general practice that EU policy avoids predicting prematurely technology ‘winners’ and the White Paper must adhere to that. A **technology-neutral policy** approach reinforces the potential for overall technological progress, which is in the interests of EU society and the competitiveness of the EU economy.

8. The vision that the White Paper presents is the one of “a competitive and resource efficient transport system”, with an ultimate target of achieving a 60% GHG emission reduction by 2050. We assume that the Commission is fully aware of the difference between “resource efficiency” as stated in the title of the White Paper and the reduction of CO2 emissions, as strategies to improve efficiency and reduce CO2 could be largely different, in particular with respect to non-fossil energy sources.

9. The transport sector accounts for roughly a quarter of total CO2 emissions from fuel combustion, but absolute CO2 emissions should not be the primary basis for selecting abatement measures in an economy. **Cost-effectiveness**, together with coherence with measures aiming at improving air quality, is the most important factor.

10. Regarding the **weights and dimensions of road vehicles**, ACEA confirms that the evolution of loading units and the development of aerodynamics devices to improve the energy efficiency of vehicles may justify a call for a fresh look at the existing legislation.

11. Some of the measures already adopted in the road transport sector are very expensive per tonne of CO2, and some of the lowest cost opportunities for emission reductions in transport have not been exploited so far. Such is for instance the case of **EMS (European Modular System)** combinations which the White Paper, in line with railways organisations’ campaigns, has decided not to promote. The automotive industry encourages the Commission to pursue its efforts to further liberalise **cabotage**.
12. In order to continue making significant CO2 reductions, it will be imperative to address all the ways for reducing CO2 in an **Integrated Approach**, not just the vehicle technology. Driver behaviour, including eco-driving and consumer awareness, alternative fuels and infrastructure have indeed an important role to play. For road freight, and Integrated Approach includes additional key elements such as improved logistics, freight consolidation, optimised packaging, longer vehicles and improved aerodynamics.

![Integrated Approach](image)

- Decoupling of CO2-emissions of road freight transport and economic growth can be achieved by an integrated approach.

13. The White Paper confirms its view that the best way to improve the environmental performance of transport is charging for the internalisation of the external costs. Manufacturers believe that charging needs to comply with several **criteria in order to be acceptable**. These criteria include:

- **avoiding double taxation.** The charges must be revenue neutral (including the cost of the equipment necessary) by reducing or removing other taxes or charges;
- **revenue collected** should be hypothecated for reducing the external cost for which the charge has been paid. Investing in new and existing road infrastructure is particularly important in order to further reduce the negative effects from road transport;
- that charges should apply to all modes of transport;
- that the level of the charge should be **fair** and based on scientifically measurable costs;
- the charging system should be as **simple and transparent** as possible;
- the collection systems must be as **interoparable** as possible.

14. A mandatory infrastructure charge for HDV is **not acceptable**, as in accordance with the principle of subsidiarity, the system has to remain optional and there is no justification for considering mandatory options.
15. Regarding the announced **regulatory measures** for reducing **CO2 from commercial vehicles**, manufacturers believe that it is needed a dedicated policy approach that takes into account the work-done principle, by looking at all the different transport missions for commercial vehicles. Transport operators already seek the most efficient mode of transport, depending on their ‘mission’. Within ACEA, manufacturers are developing an evaluation tool to calculate real-life emissions, which is meant to provide factual, solid input for policy makers.

The Commission’s White Paper says:

“Halve the use of conventionally-fuelled cars in urban transport by 2030; phase them out in cities by 2050; achieve essentially CO2-free city logistics in major urban centre by 2030”

16. When referring to “conventionally-fuelled cars”, the Commission means internal combustion engines. The Commission must be cautious about setting technology-related targets, for example with regard to city access. A technology-neutral policy approach reinforces the potential for overall technological progress, which is in the interests of EU society and the competitiveness of the EU economy.

17. The European automotive industry is developing and investing in many technologies at the same time. It is impossible to say today which technology will prove to be the most viable. Most likely, the future will see a number of technological combinations entering the market, perhaps tailored for different usage, driving locations or circumstances and consumer preference.

18. Knowing that technological developments are by definition not completely predictable, we believe that at this point none of the options should be discarded, and that no “winners” should be prematurely selected. Technological progress made by using one technology sometimes reduces the progress made with another one. This reduces the potential for overall technological progress.

19. **Company cars** are a positive tool that facilitates entrance in the market of cleanest, safest and latest fuel-efficient technology which is then reflected in the second hand market. In some Member States taxation of company cars is linked to CO2 emissions: the perverse effects mentioned by the Commission need to be verified and each national legislation needs to be assessed in detail.

20. **Public procurement** rules contribute to the modernisation of the public fleets, thus improving their environmental performance by introducing the latest, cleanest and most fuel efficient technologies and the safest vehicles into the market.
21. Regarding **speed limits**, the Commission certainly knows that the key factor linking GHG emissions and speed is not about reducing it but about maintaining it constant. Significant fuel savings can be achieved by encouraging drivers to maintain a consistent speed. **The benefit of speed limits** for LVCs is questionable. Recent studies show that speed limits for LCVs do not have a significant impact on road safety or GHG emissions. **Further research is clearly needed** in this area before considering any initiative by the Commission.

The Commission’s White Paper says:

“30% of road freight over 300 km should shift to other modes such as rail or waterborne transport by 2030, and more than 50% by 2050, facilitated by efficient and green freight corridors. To meet this goal will also require appropriate infrastructure to be developed”

22. The risk of oversimplifying complex transport issues is that policy decisions are taken on the basis of wrong assumptions that produce reverse effects. Contrary to what the general public believes—and some politicians still support—rail is not, by definition, more energy-efficient than the other modes in general and than road in particular.

23. In freight transport, modal shift is not an option. The goal of generally shifting road freight over 300 km is not supported by any of the most recent independent scientific research nor does it make sense from an economic or environmental point of view.

24. None of the documents accompanying the White Paper, namely the staff working document and the impact assessment, explain the reasons for identifying the 300 km threshold. The only argument put forward by the Commission is that “the greatest strengths of rail freight lie in longer distance transport”.

25. Whilst we certainly agree that in a long term perspective it should be possible that fully liberalised railways accept more cargo, that short sea and, where geographically possible, that also inland waterways (IWT) play their part, it is difficult to accept that the core of the Commission’s vision for future freight transport is that of road transport over 300 km being generally shifted to rail or waterborne transport. The capital role of road transport, without imposing artificial distance limitations, must be part of the picture, if we wish future transport policies to be credible.

26. **Transport modes do not compete with each other.** The Commission is certainly aware that, whereas the general perception seems to be that all modes of transport compete with each other, the fact is that some modes are in competition for transport of certain commodities, but **in general modes are complementary**. One way of identifying which modes are in competition and which are complementary, is to look at the value of the goods that are transported by the different modes.

27. Existing analysis of transport within the EU demonstrates that **the value of the goods is**
the main criterion for the selection of the mode to be used. Increasing or decreasing of road transport costs will not shift significantly the amount of goods to or from rail since road and rail handle goods of very different values. This pattern is common to all developed economies.

28. As economies develop, the relative importance of bulk raw materials, typically transported by rail and water-borne modes, diminishes while that of higher value manufactured goods, predominantly carried by road and air, increases. Other criteria for the selection of one mode over another are transport time, reliability, size of individual shipments, location and distances.

29. No mode is “per se” more friendly for the environment. It is the wrong belief that some modes are by default better from an environmental point of view than others that is the origin of the “modal shift” approach.

30. In freight transport, the environmental performance of modes depends on a number of circumstances such as its potential to utilize its maximum capacity (which depends on the size and frequency of shipments), the need for loading and unloading (which depends on its door to door capability and on the need for storage and manipulation), the density of its network (which actually has a direct impact on transport distance), the source of energy used, share of empty runs and its energy needs and specific needs with respect to the type of commodity transported.

31. As the recent study by PE International, see https://www.acea.be/wp-content/uploads/2011/06/ACEA comments on the White Paper on Transport Policy.pdf, rightly notes: “studies show that no mode of transport can be designated per se as the best environmental solution in the goods transport sector. For this the individual case has to be considered, if we want to take seriously the challenges of climate change and want to select the most climate friendly option for each transport task”.

5 Comparison of energy demand and emissions from road, rail and waterway transport in long-distance freight transport, PE International, July 2010
ACEA comments

ON THE COMMISSION’S KEY MEASURES TO ACHIEVE ITS VISION

1. Some half of the 40 initiatives proposed by the Commission in the White Paper are, to different degrees, related to road transport. Whereas those referring to rail aim at positively promoting railroad and at increasing its efficiency, those addressed to road avoid facilitating any cost-effective fuel-efficiency improvement. This is the result of the Commission’s political assumption that rail is an “environmentally friendlier mode" and therefore deserves to be promoted over road.

2. Indeed, while putting forward positive initiatives for rail, the White Paper is promoting initiatives aiming at increasing road transport costs and does not support any cost-effective, fuel-efficiency improvement of road freight. Is this due to the fact that the cost of road transport has an impact on the transport cost of other modes? Such a direct impact on rail costs is clearly identified by Transport & Environment, the Brussels-based and well sourced NGO, in these graphs:

6 Commission staff working document accompanying the White Paper, SEC(2011)391 final, page 37, paragraph 133
7 CER, the Community of European Railways, is one of T&E’s members
3. This concerning political framework raises the following questions: is the actual performance of rail becoming a political obstacle to cost-effective fuel-efficiency improvements of road freight? On what basis have the rail freight measures been evaluated by the Commission? Data to answer the above question do not unfortunately exist.

Source: Prof. Alan McKinnon, Logistics Research Centre, Heriot-Watt University, Edinburgh, UK

4. The underlying principle in co-modality is efficiency. To stay competitive with respect to cost all modes have to improve their efficiency. The achievement of a true internal market for rail services and the improvement of their full potential in terms of productivity is essential for a true co-modality based on efficiency. The evolution of rail freight in the US in the last decades shows the impact that the liberalisation of the market, meaning that railroads are no longer run by the government, brings to the productivity of railroads. In the 1980s, the US Congress passed the Staggers Act, which had the following impact on productivity, volume, revenues and rates.

8 Report for the 15th ACEA Scientific Advisory Group Meeting, Brussels, 8.9.2010
5. Accurate transport statistics are urgently needed. The White Paper has indeed failed to address one of the major problems faced by transport policy: the statistics on freight transport. The current way of measuring freight transport in the EU poses serious methodology concerns and is far from satisfactory. The statistics available from official sources present only a partial view and can give a misleading perception of the efficiency of the various modes of transport: the measurement of freight outputs and efficiency on a consistent basis across modes is essential.

6. Freight transport is traditionally measured in the EU in terms of tonne-kms (freight moved) and tonnes-lifted (weight loaded onto vehicles at the start of a journey). Measuring freight output solely by these weight-based measures does not reflect the value of the goods being transported and hence the true economic contribution of the transport operation. Simple mode share proportions may then misrepresent the contribution of different modes to the overall value-added in the economy.

7. Measuring freight output by weight does not take account of volume. Nor does it allow for the fact that in many sectors the average density of freight is declining. Light items can be very bulky causing vehicles to ‘cube out’ before they ‘weigh out’. Weight-based utilisation measures can then give the impression that vehicles are under-loaded when, in fact, their deck-area or cubic capacity is fully used. The result is that in national and European statistics average truck utilisation appears to be lower than it actually is.

8. Another area of concern is the definition of load on different modes as showed in these drawings. In the road freight sector it is almost invariably the net payload weight which is measured. Rail freight statistics, on the other hand, sometimes quote gross tonne-kms including the weight of the rolling stock or intermodal unit. Ferry operators also report the gross weight of the truck in their statistical returns. These practices clearly result in inconsistencies in the measurement of freight traffic carried by different modes. There is a need for greater harmonisation in the collection and reporting of freight statistics.

Road

Load ?

Train intermodal

Ferry
9. It is commonly accepted that the divide between road and rail solutions takes place according to a threshold distance, D^*, whereby, road is cheaper for short distances, rail for long distances. The value of this threshold is debatable, although the average of 500 km or even 800 km is often quoted.

![Diagram showing cost comparison between road and rail transport](image)

Source: Prof. Michel Savy, University of Paris East, Director Observatory of Transport Policies and Strategies in Europe

10. At the origin of the 300 km threshold might be a recent study with respect to modal shift in Germany, where the definition of economically suited road transports, which can be theoretically shifted from road to combined transport, are those transports with a minimum distance of 300km. It is worth noting that the distance average in 2007 in Germany for conventional rail traffic is only 275 km, whereas in combined transport the average distance is 493 km (Walter, 2008). Moreover, the results of the study, which does not take into consideration “value of time”, “quality of service” or CO2 impact, show that the absolute maximum market potential for the combined transport covers only 10% of the actual road transport market. Almost all road transports (90%) are not suitable for combined transport.

11. It is not exact that a higher proportion of road freight is moved over short distances as the Commission suggests. Freight transport is traditionally measured in tonne-km. Measuring freight output with this weight-based method results in a misleading interpretation of the reality. Indeed, construction material - very heavy, in high quantities - is transported by road mainly into/within cities over short distances, and accounts for a large share in terms of weight, but not in terms of distance. When interpreting the statistics, one may then wrongly believe that the majority of road shipments remain in the “below 300 km” category, as the Commission maintains.

10 Market analysis for shifting goods from road to rail by means of combined transport (CT) in Germany, Agnes Eiband, M.B.A. & Eng., Fraunhofer Institute for Material Flow and Logistics.
12. Regional Cohesion must be respected by European policies. Local conditions and distances to main markets have a major impact on road freight transport distances, which can be seen in the following graph. This information on the proportion of tonne-km by distance (bands) in 2009 gives an indication of the relative significance of short-haul vs. long haul within each Member State, and the overall EU 27. It clearly illustrates that peripheral Member States would be most affected by a modal shift approach over 300 km. The vision proposed by the Commission, if implemented, could place an intolerable burden on many peripheral regions already struggling to improve their competitiveness. Transport policy should aim at enforcing the cohesion within the EU not at jeopardising it. This means that core and peripheral Member States may not be discriminated against through transport policy.

![Figure 2-18: Proportion of total tonne-km for different journey distance bands by Member State in 2009](image)

EU12 ~ 60% EU15 ~ 35% of distances are over 500km and therefore an even higher proportion are over 300km

13. The Commission envisions an important extension of the European high-speed rail network by 2050, tripling the length of the existing high-speed rail network by 2030 and maintain a dense railway network in all Member States. By 2050 the majority of medium-distance passenger transport should go, according to the Commission, by rail.

14. Individual and collective transports are not, as often assumed, communicating vessels, neither is collective transport, per se, better from an environmental perspective. Individual mobility will remain the key solution to mobility for the future. Citizens will continue to choose the car. Individual and collective transports offer different services and therefore fulfil different needs.

15. **High speed rail investments do not necessarily pay-back in CO2 reduction** as assumed by the White Paper. Speed is indeed a key factor. The energy needed for acceleration is determined by the weight of the train and the final speed\(^1\). This kinetic energy increases with the square of the speed, as does aerodynamic resistance. Therefore, moving a train at 300 km/h will require roughly four times the energy needed for a trip by conventional rail at 150 km/h. Reaching 3 times the conventional rail speed up to 450 km/h will need nine times as much. Not to mention the emissions caused by building the lines, which is a critical factor in an environmental assessment too.

16. The rail sector often claims that **investment in rail infrastructure** will bring large **environmental benefits**\(^1\). However, independent research on the other hand, concludes that **these benefits are not so important**\(^1\). Both Per Kageson\(^1\) and Chris Nash\(^1\), agree that “environmental benefits are unlikely to be a significant part of the case for high speed rail when all relevant factors are considered”.

- **Road Freight (initiative 6)**

17. Vehicle manufacturers agree with the Commission that further integrating the road freight market is needed in order to take advantage of the open markets. The social, technical, safety and market rules established at European level should be equally implemented in all Member States and actually enforced in an effective and non-discriminatory way throughout the EU. The Commission is also encouraged to pursue its efforts to liberalise cabotage.

18. Regarding the weights and dimensions of road vehicles, ACEA confirms that the evolution of loading units and the development of aerodynamics devices to improve the energy efficiency of vehicles may justify a call for a fresh look at the existing legislation.

19. Automotive manufacturers regret the approach to EMS (European Modular System) combinations taken by the Commission in the White Paper. Contrary to what the Commission seems to suggest, actual experiences and two independent reports financed by DG Move have already confirmed the positive effects of a wider use of EMS.

\(^1\) UIC, Process, Power, People, 2008, page 20 and following
\(^1\) Banverket 2008, UNIFE 2008, UIC 2008
\(^1\) de Rus 2008, WSP and KTH Jarnvagsgruppen 2008, Nilsson and Pydokke 2009
\(^1\) Per Kageson, Environmental Aspects of Inter-City passenger Transport, OECD/ITF 2009
\(^1\) Chris Nash, University of Leeds, When to invest in high speed rail links and networks? OECD/ITF 2009
20. Unfortunately, DG Move insists in ignoring these confirmed positive results and has undertaken a third, new study. It has in the meantime changed its interpretation of Directive 96/53 EEC which limits cross border usage of EMS combinations. Again, the Commission has, in line with railways organisations’ campaigns, chosen not to promote cost-effective fuel efficiency measures for road transport.

21. The European auto industry is leading in safety technologies worldwide and consistently sustains high investments in ground-breaking R&D. With over €26 billion invested in R&D each year, of which a large proportion is dedicated to developing further initiatives to enhance the passive and active safety features of new vehicles, the ACEA members are the largest private investors in R&D in Europe. ACEA has a long track record regarding road safety, based on innovation and responsibility.

22. The European automotive industry is a keen supporter of the EU objective to reduce road fatalities. Over the past decades, so-called passive safety systems such as seatbelts and airbags have played a major role in road casualty reduction and the technologies involved have been constantly further improved. Many ‘active’ safety features including ABS and electronic stability control are now increasingly being fit as standard as well.

23. The European industry will continue playing its role to contribute to the reduction of road accidents and will remain at the forefront of progress in technology innovation. The automotive industry believes that an Integrated Approach, in which all stakeholders play their part, is however of utmost importance. Significant efforts must be put in improving both the infrastructure and consumers’ behaviour. At the same time, improvements of the traffic circumstances with intelligent and well-designed infrastructure need to be made. The national and local authorities also have an important role to play by improving the education and enforcement of road traffic rules.

24. Affordability of new vehicles, especially in new Member States, remains an essential element of road safety policy. Measures to drive fleet renewal are to be encouraged since the average age of cars in some countries can be up to 16 years. Replacing less safe older cars from the fleet will help, but again, so too will improvements in infrastructure, enforcement and driver education.

18 One Directive, three different and increasingly restrictive interpretations: Barrot 2006, Tajani 2009, Kallas 2010
• Passengers’ rights (initiative 21)

25. Automotive manufacturers fully agree with the Commission that quality of service is an important competitive asset in all modes of transport. The strengthening of passenger rights for air, rail, sea and coach travellers is a positive step towards quality and efficiency. This principle could usefully be applied to all transport users on all modes. But the user rights of the biggest transport sector for both passenger and freight, namely road transport, have not been included so far.

26. Road transport activities contribute almost €427 billion to government revenues. Surely this contribution to the economy deserves certain user rights. European vehicle manufacturers would therefore support the Commission’s proposed action to examine how increased quality of service and users’ rights can be promoted in all modes of transport.

• Seamless door-to-door mobility (initiative 22)

27. In the years ahead, further technological breakthrough will come through interaction between driver, vehicle and the environment. Successfully implementing these Information & Communication Technologies (ICT) and Human Machine Interaction (HMI) will play a major role in driving casualties down further, and the automobile industry is working to make this happen. However, a collaborative approach is necessary to support an interface with in-vehicle safety systems to exchange information and reinforce operational strategies.

28. Vehicle manufacturers are actively contributing to the Commission’s ITS Action Plan and are working to address issues such as the need for a user-friendly Human Machine Interface (HMI), as well as matters relating to privacy and driver liability. Innovation, creativity and competition will deliver progress in ICT and ITS. Manufacturers support standardisation where it makes sense and where products and service are mature enough to generate a larger market. However, regulations must be considered on a case-by-case basis and subject to rigorous impact assessments.

• A technology roadmap (initiative 24)

29. The White Paper has identified some of the critical technology paths that will support the future development of road transport. In addition to the stated objectives of vehicles in all modes becoming cleaner, safer and more silent, the affordability of vehicles and the efficiency, competitiveness and safety of the integrated transport system also need to be in focus.

30. The White Paper has particularly identified vehicle efficiency, alternative fuels and information and communication systems as the main factors in technological innovation. A comprehensive approach is needed, which requires additional concentration on areas such as future mobility concepts, vehicle manufacturing, integrated safety (safe vehicles within cooperative systems) as well as continued focus on conventional technologies to maintain Europe’s existing global technology leadership.
31. Specifically, the technology areas of interest are the following, which represent a comprehensive overview of the essential technologies for supporting all the future objectives for road transport:

- Mobility and transport in urban areas, interurban corridors and interfaces
- Enhanced power trains and alternative fuels
- Electrification of the vehicle
- Safety applications in co-operative systems
- Suitable materials
- Ecological and efficient manufacturing.

- An innovation and deployment strategy (initiative 25)

32. With conventional fuels running out and the need to promote renewable energy use, it is clear that motor fuels will change in the near-term. Manufacturers are exploring basically two major non-fossil fuel technologies which are in theory able to fully replace gasoline and diesel: electrically chargeable vehicles and hydrogen powered cars. It cannot be said at this point which one of them will prove to be the most efficient, environmentally friendly and economically viable. Both alternatives are solutions for the longer term, which still need a lot of research and development before a wide market penetration can be achieved at affordable prices, and based on renewable sources. The carbon footprint of electrically chargeable vehicles depends upon the electricity source and the energy mix of the relevant country. Hence the ecological interest in developing a corresponding policy for the green production of electricity.

33. In the meantime, conventional engine technologies in combination with hybrid and biofuels will prove to be appropriate options. The Commission should avoid setting conflicting objectives (eg: biofuels for aviation and for road transport).

34. The blending of renewable components into petrol and diesel will help reduce CO2 emissions and also ease concerns about energy security.

35. There are numerous conditions a fuel has to meet before it is fit for powering a vehicle. The fuel has to deliver sufficient energy, it has to be produced sustainably, it has to meet high quality standards to fit the technological demands of modern propulsion systems, it has to be widely available and transportable, to name a few important criteria.

36. Auto-makers simply demand that market fuels are ‘fit for purpose’. This means they provide the desired performance, they help reduce emissions (tailpipe gaseous and particle emissions and evaporative emission from the fuelling system), they help to keep engines running cleanly, they are not apt to degrade in performance or quality, they are available at all filling stations across the EU and meet a common standard and the fuels are properly labelled at the pump.

37. Affordability of new vehicles and fleet renewal are key to achieving environmental and safety improvements. This is because the main environmental and safety challenge arises not from new vehicles, but from the large existing fleet of old vehicles on the road. Measures to promote fleet renewal are therefore particularly effective.

- A regulatory framework for innovative transport (initiative 26)

38. The automotive industry is one of the most regulated sectors in the EU due to its highly complex products and the many issues that must be considered relating to vehicle use. Most rules define detailed technical prescriptions for which the specialist knowledge of automotive manufacturers is essential.
39. Regulation helps set common rules and standards which ensure a level playing field and fair market conditions in the EU and abroad. However, regulation can also damage the competitive strength of an industry. This is especially true if there is no common framework to detect conflicting interests of different regulations. Competitiveness can also be affected by regulation which is not properly assessed for effectiveness and where potential side-effects have not been identified. Without these checks, regulation can lead to high unnecessary costs, an unnecessary burden and competitive disadvantage for auto makers.

40. The European Commission has recognised the risk of over-regulation in the automotive industry and pledged to take action. With CARS 21, an important tool was established that is proving its value, and especially, in times of economic turbulence. However, despite progress, the CARS 21 principles still need to be applied much more coherently throughout European legislation. Approaching 2015, manufacturers face a barrage of new rules on emissions and safety. These include tighter emission limits, new car CO2 rules and complementary measures, like tyre pressure monitoring and gearshift indicators. On safety, phase 2 of legislation on pedestrian protection will come into force and electronic stability control, advanced brake assist and daytime running lamps will become standard kit.

41. This means heavy investments for manufacturers. But that comes at a price. Clearly, vehicles need to remain affordable and policy makers cannot ignore the costs to consumers and the effect this may have on achieving policy goals. Cost-effectiveness, impact assessments and harmonisation are the key to ‘better regulation’.

• **Travel information (initiative 27)**

42. Automobile manufacturers encourage all initiatives aiming at promoting more sustainable behaviour by users provided that the information facilitated to the users is accurate, balanced, fair and neutral from a technology perspective. The information provided will need to take into account the three pillars of sustainability, namely: environment, economy and society.

• **Vehicle labelling for CO2 emissions and fuel efficiency (initiative 28)**

43. The automobile industry recognises the need for modernising the current EU framework on CO2 information and labelling and is taking active part in the debate on how to best inform car buyers, whether in ads or through a comprehensive and workable labelling scheme. The industry supports, therefore, a EU-wide harmonised car labelling scheme, including a system for colour-coding, which ought to be clear and easy to understand by consumers.

44. Apart from supplying of CO2-cutting technologies, which the industry is doing, informing consumers about product innovation, building awareness and encouraging consumer acceptance of new models will all be essential to meet fuel efficiency standards.

45. It is however of key importance that fuel efficiency information requirements take into consideration whether it is a B2C or a B2B relation, recognizing both the different needs and the higher complexity of the B2B offerings and the fact that complete heavy duty vehicles are built to customer specifications and therefore not available in showroom to be "labelled".
• **Carbon footprint calculators (initiative 29)**

46. The White Paper suggests developing common EU standards in order to estimate the carbon footprint of each passenger and freight journey. The development of climate change strategies by the EU, Member States and companies is creating the need for more accurate estimates of the carbon footprints of different freight transport modes. Except for road, currently available carbon intensity values for rail and waterborne modes (expressed at gCO2 per tonne-km and p-km) are often based on crude assumptions about vehicle loading and fuel efficiency. Inaccuracies and inconsistencies in these values may cause policy-makers and managers to exaggerate (or underestimate) the potential carbon benefits of a modal shift. The credibility and general acceptance of carbon footprint calculators is therefore conditioned to the improvement of the existing data.

• **Eco-driving and speed limits (initiative 30)**

47. Fuel-efficient driving ("Eco-driving") can significantly reduce fuel consumption and lower CO2 emissions. Slight changes in driving style enable drivers to exploit fully the fuel-efficiency potential of modern technologies. It is highly cost-effective since eco-driving training leads to a reduction in fuel consumption of up to 25% after training, with significant long-term effects of 7% under everyday driving conditions. The reduction potential is also high. Drivers' training proves to be very important: it could be part of the learning package for new drivers and could also cover experienced drivers. Driving schools and professional driving instructors can contribute significantly.

48. The White Paper does not mention eco-driving for rail transport. However, as noted by the railway industry itself, “experts agree that energy efficient driving is one of the biggest single opportunities for energy saving in rail”\(^\text{19}\) and therefore should be further promoted.

49. Regarding speed limits, the Commission certainly knows that the key factor linking GHG emissions and speed is not about reducing it but about maintaining a constant speed. It is moreover not relevant for urban transport, where most of the GHG emissions are originated.

50. According to recent European Environment Agency (EEA) articles\(^\text{20}\), “Significant fuel savings can be achieved by encouraging drivers to maintain a consistent speed (...) including through effective enforcement of speed limits” and “the exact benefit of speed limits depends on a number of factors, however, including both technological effects such as the fall in energy consumed when decreasing speed, and non-technological factors such as vehicle fleet composition, driving patterns, frequency of speeding, congestion and traffic diversion due to the speed limit”. Further research is clearly needed in this area before considering any initiative by the Commission.

51. In safety, the focus should be made on actual enforcement of existing speed legislation, not on limiting the speed. Reducing the speed limits for light commercial vehicles on grounds of “ensuring a level playing field with HDV” as argued by the Commission is not a very convincing argument. As confirmed by the study financed by the Commission in 2010\(^\text{21}\), in the EU there is no substantial competition between light and heavy commercial vehicles. Not to mention that reducing the speed limits for light commercial vehicles may lead to an increase in the number of LCVs on the roads as the same amount of goods need to be delivered and the same timing is needed, thus increasing congestion.

\(^{19}\) *Process, Power, People – Energy efficiency for Railway Managers*. (UIC 2008), page 37

\(^{20}\) *Do lower speed limits on motorways reduce fuel consumption and pollutant emissions? And Reducing speed limits on motorways: how good is it for the environment?*

\(^{21}\) *Light Goods Vehicles in the Road Transport Market of the European Union, Final Report, July 2010*
• **Urban mobility Plans (initiative 31)**

52. Europe’s urban areas differ greatly. They reflect the geographical, historical, political, economic and social diversity of the continent. The transport needs of these diverse urban environments are also different. Urban transport is organised differently in every Member State, with different allocations of policy responsibility, administrative structures and financial responsibilities. Answers to urban transport questions are by the nature of this diversity, local not national or European. The potential added value that could be demonstrated at the European level for what are essentially local issues, requiring subsidiarity, needs to be further clarified.

53. As a result of technological innovations, air quality in cities has significantly improved and will continue to improve in the future. The industry is continually making enormous investments in cleaner technology. Compared to 1970 levels, passenger cars now emit 95% less Nitrogen Oxide (NOx) and other pollutants. Since 1985, emissions were reduced by over 90% for heavy-duty vehicles.

54. The environmental and safety benefits from implemented technology will increase as new vehicles progressively replace old vehicles on the streets. The industry stresses the fact that the renewal of the currently aged vehicle fleet will contribute more significantly to the reduction of emission levels and safety than the prescription of new technology. With some of the new Member States having an average age of the vehicle park of 16 years, imposing costly requirements on new vehicles is not the right way forward. The affordability of new vehicles is at stake.

55. Cycling and walking are often assumed to be alternatives to motorised transport, at least in urban areas, but in most European cities only a few can afford walking and cycling to work or for leisure, the cost of living close to the place of work or leisure being too high. Nowadays, for most citizens, not using their cars or the collective transport has become a luxury. Cycling is with no doubt very successful in flat countries with no extremes of temperatures but it is surely not a pleasant or even healthy activity in mid-July in a southern hilly city. For most, motorised transport is the only option. That is why land and urban planning are so important. We should not forget that the transport behaviour of citizens depends on their transport needs and this depends on how the land and cities are organized.

• **An EU framework for urban road user charging and access restriction schemes (initiative 32)**

56. A sustainable urban transport policy needs to meet the economic, social and environmental needs of cities. Sustainability requires a balance between its economic, social and environmental pillars. The importance of transport to urban social and economic structure must have a relevant position in the discussion. Such a balanced approach is the only way to treat complex interrelationships and trade-offs that are involved in urban transport. It is possible to conceive measures to restrict traffic but it should not be forgotten that this has serious implications from an economic and social perspective. Access restrictions schemes must not hinder mobility by increasing costs and their implementation has to avoid increasing inequalities, between city and suburban residents, singles and families, resident and non-resident. One must also guarantee the mobility of suburban residents who have no other alternatives of transport but cars.
57. Traffic is a basic requirement of cities in which economic activities are carried out. It is not wrong to say that urban congestion is caused by different reasons in every city depending on the structure of the town. Road users generally accept a degree of road congestion but attach a high value to the reliability and predictability of road travel conditions. Reliability needs to be given greater weight in assessing options and prioritising congestion mitigation measures. The solutions to congestion should not focus on penalising or reducing traffic but rather on its fluidity in order to respond better to mobility needs. This can be done effectively through simple solutions (development of collective use of cars, creation of parking near public transport stations, combined pricing offers car parking/public transport, investment in infrastructure and use of ITS) without resorting to complicated and expensive measures and these should be tried first before more complex solutions are invoked.

58. The industry stresses the fact that the renewal of the currently aged vehicle fleet together with fundamental traffic management measures will contribute more significantly to improve air quality and reduce CO2 emissions than implementation of access restrictions to city centres.

59. There are five main types of measures that restrict access to cities: licenses or permits, vehicle masses and dimensions, vehicle emissions, time restrictions and charging mechanisms. None of the restriction method can be condemned outright as wholly unacceptable or ineffective. It very much depends on the detail of the scheme and how it is put into practice. Rather it is a case of assessing each restriction measure on a case-by-case basis, in accordance with certain criteria, to establish whether or not they are effective and acceptable.

60. Any measure implemented needs to have clear and measurable objectives and has to follow the principles of better regulation, notably simplification, reduction of administrative burdens and impact assessment including cost/benefit analysis. It is very important that authorities that decide to implement access restrictions have a vision for mobility and have a strategy that is not static but subject to regular monitoring and periodic reviews. Restrictions should have a clear objective and be removed as soon as the objective is reached. They need to be subject to a progress status of the targets and be regularly adjusted if required.

61. Unfortunately local authorities in the EU have approached access restrictions with an array of mainly un-harmonised measures, which are increasingly creating difficulties for both local and international business. Measures should be reassessed to ensure that they are based on objective criteria, are fair and justified. The various types of restrictions currently implemented in the EU need to be further co-ordinated.

62. Considering the economic, social and environmental potential impacts of access restrictions, the automobile manufacturers understand that these require further debate. Further exchange of experiences and information, as well as good cooperation between all urban stakeholders is needed in order to apply the most adequate solution to the specific needs of each individual urban centre in Europe.
A strategy for near “zero-emission urban logistics’ 2030 (initiative 33)

63. The delivery and collection of goods in urban areas, especially in cities within old centres, have a major impact on the economic power, quality of life, accessibility and attractiveness of the city. Given the limited space available in urban areas, there is a severe competition between various means of passenger transport and freight transport. Integration between passenger and freight transport is sometimes a challenging task, since urban goods transport operate within integrated supply chain management whereas passenger transport serve individual needs.

64. New consumer demands are coming. The dominant factor in EU Member States is the growth in older population and the declining share of the young citizens. Changes in composition of society lead to changes in consumer behaviour, resulting in changes in markets. Changes in consumer behaviour affect the types of goods demanded, the quantitative and qualitative distribution of goods and the organization of deliveries. Customers increasingly expect product focused on their demands and flexible delivery systems.

65. Accessibility problems encountered by urban freight transport are often caused by an insufficient urban freight transport infrastructure: as a result of growing restrictive parking policies, there is a serious lack of parking places in general and in particular of places dedicated for freight vehicles that can be used for loading or unloading. Even where such places exist, other vehicles often occupy them, since restrictions allowing only freight vehicles to use such places are rarely enforced. This results in freight vehicles being forced to double-park on roads when they stop for delivery, causing disruption of traffic and safety problems.

66. Many local authorities in Europe impose access restrictions on freight vehicles. They restrict movements of freight vehicles in city centres according to time, size, weight, etc.... As a result, operators of goods transport are forced to adjust their logistic systems to deliver goods to such areas within the imposed time frame and/or to use smaller vehicles. Such restrictions differ among different municipalities and are often not sufficiently explained to drivers. These factors cause grave difficulties for operators having to organize national-wide supply chains while responding to increasingly stringent customer demand of frequent, just in time and reliable deliveries. The lack of available infrastructure and access restrictions aggravate congestion, which is another major difficulty encountered by urban freight transport.

67. New solutions for urban freight distribution should be looked at. Urban consolidation centres have to be further promoted and alternatives for traditional freight deliveries should be further considered and supported. They are usually cost-effective measures that have a positive impact both from an economic and environmental point of view. As rightly pointed out by the Commission, the use of Intelligent Transport Systems contributes to real-time traffic management, reducing delivery times and congestion for last mile distribution. This could be performed with low emission urban trucks in a 24 hour distribution system.
• A core network of strategic European infrastructure – A European Mobility Network (initiative 34); Multimodal freight corridors for sustainable transport networks (initiative 35); Ex-ante project evaluation criteria (initiative 36); A new funding framework for transport infrastructure (initiative 37)

68. The automotive industry and its customers rely heavily on a functioning transport network that provides reliable and efficient mobility to citizens and helps companies conducting business competitively compared with other regions of the world. From its perspective as a leading industrial sector, automobile manufacturers share the view that the European transport network is increasingly characterised by the persistence of bottlenecks, missing links and lack of interoperability. The competitiveness of the European economy needs a better transport network and a new impetus is needed to create this. The infrastructure of the future must be constructed for the mobility of the future, thus facilitating access to alternative fuels and making new technologies compatible with the thought-out the whole transport network.

69. The Commission has to avoid addressing transport infrastructure policy on the basis of “modes of transport” but on the basis of “efficient transport” and should not base its policy on the assumption that some modes of transport would be, by definition, more environmental friendly than others and should therefore be given preeminence over the others. Establishing lists of priority projects with a disproportionately large share of non-road projects because they are generally perceived as more environmentally friendly than other is therefore the wrong approach and does not help the European Union to provide a sustainable transport system based on social, economic and environmental needs. Contrary to a widespread belief, modal shift is suitable from an environmental point of view in some very specific cases, but it is neither possible nor suitable in the majority of the traffic flows.

70. Europe should concentrate on projects that promote the most appropriate transport link. The Commission should develop a rigorous methodology to identify and select the priority projects covering all major transport axes that cross several Member States. And projects should be subject to a strict socio-economic evaluation and for their high relevance to transnational traffic flows. All future priority projects therefore need to be subject to rigorous cost/benefit analysis.

71. Europe’s transport infrastructure, especially its road network, is falling behind what is required for a modern economy. This is mainly due to lack of investment. This has contributed to bottlenecks and increased congestion and CO2 emissions. Spending on road infrastructure has fallen to dangerously low levels and this is one trend that must be reversed. Europe should be funding key transport projects that will not only modernize Europe’s infrastructure, but will also help reducing negative environmental impacts and will create millions of jobs by developing existing, new and smarter infrastructure, especially road. Europe should not be lagging behind other leading economies: it needs more Community and national funding for key transport projects. This is particularly so in view of the huge contribution that transport, in particular road, has made and will still be making to the tax revenue of the Member States.

72. Finally Trans-European Transport Networks should not be looked at in isolation. At this time there are several other initiatives at a European level being discussed which have relevance for future networks. Most notably amongst these are the amendment of the Eurovignette and the actual implementation of the directive on interoperability of toll collection systems as well as several ITS initiatives. All of them will also impact the transport networks. Europe does not only need additional investment in the road network but also in its intelligence. ITS applications can contribute to an efficient use of the existing infrastructure. However, they cannot overall replace infrastructure investment.
73. The increasing use of tolls, either through an interoperable electronic collection system or through other means should provide dedicated finance for investment. This finance from road users should not be in addition to existing taxes but it should be dedicated to the improvements in the road network that users have the right to expect in return for the €427 billion they already contribute to government revenue. It should not be used to cross-subsidise poorly performing transport modes which provide only limited alternatives.

- **Smart pricing and taxation (initiative 39)**

74. The overall objective of the European Transport Policy is said to be the provision of a sustainable transport policy that meets society’s economic, social and environmental needs. Therefore, the political goal of any transport measure should be the reduction of the negative effects that transport may cause to society without hindering its economic development. The Commission seems to have taken for granted that the best way to improve the environmental performance of transport is charging for the internalisation of the external costs.

75. The European automobile manufacturers want to highlight the criteria that charging has to meet in order to be acceptable. These criteria include:

- avoiding double taxation. The charges must be revenue neutral (including the cost of the equipment necessary) by reducing or removing other taxes or charges;
- revenue collected should be hypothecated for reducing the external cost for which the charge has been paid. Investing in new and existing road infrastructure is particularly important in order to further reduce the negative effects from road transport;
- that charges should apply to all modes of transport;
- that the level of the charge should be fair and based on scientifically measurable costs;
- the charging system should be as simple and transparent as possible;
- the collection systems must be as interoperable as possible.

76. Regarding the reference to a mandatory infrastructure charge for HDV, manufacturers want to remind the Commission that, in accordance with the principle of subsidiarity, the system has to remain optional and there is no justification for considering mandatory options. A different approach would mean ignoring the existing differences between the Member States’ road networks in terms of use intensity and efficiency. It is essential any revision of the Eurovignette directive does not imply imposing additional burdens on operators. Any attempt to introduce external costs charging should be accompanied by measures in order to avoid double charging due to already existing levies.

77. Company cars are a positive tool that facilitates entrance in the market of cleanest, safest and latest fuel-efficient technology which is then reflected in the second hand market. In some Member States taxation of company cars is linked to CO2 emissions: the perverse effects mentioned by the Commission need to be verified and each national legislation needs to be assessed in detail.

- **Transport in the World: the external dimension (initiative 40)**

78. European Automotive manufacturers produce the most fuel-efficient vehicles in the world. European manufacturers have introduced more than 50 CO2 cutting technologies into their vehicles since 1995 and motor vehicles have become increasingly efficient thanks to fuel consumption reduction.
79. A very important element in the CO2 discussion is the need for a regulatory approach on a worldwide basis. Standards, tests methods and emission limits differ from market to market. In the US, Europe and Japan this has led to different technical solutions and consequently different, unique certification tests and at extra costs. The result is that it takes longer to bring the cleanest new vehicles to market. We believe that it exists a real potential to agree on a common approach for EU, USA, Japan, China and others considering today’s strong global support for CO2 emissions reductions. So the EU has to take the lead and drive a worldwide harmonisation process towards an Integrated Approach.

About ACEA

The European automotive industry is key to the strength and competitiveness of Europe. The ACEA members are BMW Group, DAF Trucks, Daimler, FIAT Group, Ford of Europe, General Motors Europe, Jaguar Land Rover, MAN Nutzfahrzeuge, Porsche, PSA Peugeot Citroën, Renault Group, Scania, Toyota Motor Europe, Volkswagen Group, Volvo Cars, Volvo Group. They provide direct employment to more than 2.3 million people and indirectly support another 10 million jobs. Annually, ACEA members invest over €26 billion in R&D, or 5% of turnover.